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Fig. 4. Normalized susceptance of the centered circular aperture in the
cross-sectional plane of a rectangular waveguide (�: wavelength).

In comparison, the Ewald sum-based calculations presented in
Fig. 2 show very rapid convergence. The average error decreases
exponentially as the number of calculated terms increases. In Fig. 2,
superscriptsA andF desiginates the magnetic- and electric-vector
potential functions, respectively. The results shown in this figure have
been obtained through averaging Green’s function calculations over
625 different source–observation point pairs (25 source points� 25
observation points) evenly distributed on the same cross-sectional
plane of the waveguide(z = z0). On average, 18.73 and 22.01 terms
were needed to obtain 10�4 and 10�5 convergence, respectively.
Therefore, the proposed method can achieve sufficient accuracy for
most numerical applications with only about 20 term calculations.

The next result concerns the optimum choice of the Ewald sum
parameterE. In Fig. 3, relative calculation times are given as a
function of the parameterE. For the small and large values of
E, the total calculation time increases due to the slow convergence
of the spatial and spectral series, respectively. The overall average
calculation time is minimized for theE values in the range of
0:6�=

p
ab� 0:9�=

p
ab under the proposed calculation schemes.

Finally, Fig. 4 shows the application of the proposed method
to the scattering analysis of a centered circular aperture in the
cross-sectional plane of the rectangular waveguide [8]. The MoM
analysis employed the Galerkin’s method with triangular-rooftop
basis functions. The aperture has been discretized with 90 triangular
elements and 145 basis functions. It took about 30 s to obtain one
point data on a Sun UltraSpark1 workstation. The calculated results
agree well with those by the variational method [8] within the error
bound of the variational formula.
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FDTD Improvement by Dielectric
Subgrid Resolution

Gaetano Marrocco, Marco Sabbadini, and Fernando Bardati

Abstract—Material inhomogeneities are taken into account in the
standard finite–difference time-domain method by staircase modeling of
medium boundaries. Resolution is, therefore, limited by Yee’s cell sizes. In
this paper, a new scheme is proposed, which improves material resolution
without increasing the demand of computer resources.

Index Terms—Dielectric inhomogeneity, FDTD method, subgridding.

I. INTRODUCTION

The finite-difference time-domain (FDTD) method [1] is well
suited to compute electromagnetic-field components, which are tan-
gential to the interface among different dielectric media. Dielectric
discontinuities are modeled by plane surfaces through mesh nodal
points while each elementary cell is homogeneously filled. To analyze
complicated structures, such as irregularly shaped and inhomoge-
neous microwave devices, it is necessary to use a fine cell size
and large computer resources. Moreover, the modeling of curvilinear
boundaries [see Fig. 1(a)] requires staircase approximation in order
to accommodate the structure to the computational grid. In such a
case, the accuracy is related to grid-size refinement, i.e., to computer
resources. Halving the cell size improves boundary accommodation
[see Fig. 1(b)]. More economical in terms of computational burden,
an inhomogeneous cell can be treated as it was homogeneously filled
by a medium with parameters", �, �, which are obtained by volume
averaging of the different media inside the cell. However, this method
does not give very accurate results. Alternative formulations have
been proposed, which model boundaries by local modification of
Maxwell’s equations [2]–[4], local grid modification [5], or globally
irregular gridding [6], [7]. These methods differ substantially in
the modeling of dielectric interfaces and generally require complex
algorithms and preprocessing. A different method by Gwarek [8],
[9] is based on separate modeling of several kinds of dielectric
discontinuities, which may occur when a standard FDTD cell is
intersected by a dielectric interface [see Fig. 1(c)]. In this method,
a couple of effective parameters is associated to each intersection,
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(a) (b)
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Fig. 1. Approximation of a general boundary between two dielectric media.
(a) Staircasing with homogeneously filled cells. (b) Halved homogeneously
filled cells. (c) Local discontinuity modeling. (d) Uniform sub-cell partitions,
as in DSR.

accounting for the dielectric inhomogeneity. The method has been
proven to be successful and accurate for the analysis of microwave
devices. Nevertheless, it requires preprocessing operations intended
to classify the intersections between cells and boundaries and to fill
a database of effective parameters.

In this paper, as in Gwarek’s method, dielectric discontinuities
are taken into account by the use of effective parameters, but the
dielectric structure is modeled on a systematic basis more than by the
use of local classification of boundary–cell intersections. A dielectric
subgrid resolution (DSR) is achieved if each cell is allowed to be
filled by different materials in such a way that each FDTD cell
is regularly partitioned into eight homogeneously filled sub-cells,
which reduce to four sub-cells in a two-dimensional (2-D) problem.
Dielectric boundaries, therefore, are allowed to pass through a cell,
as in the Gwarek’s method, but only conforming to this partitioning
scheme [see Fig. 1(d)].

II. GENERALIZED CONSTITUTIVE PARAMETERS

In the standard FDTD formulation, the elementary Yee cell
(electric-field components along a cube edges) is filled by a
homogeneous medium. Dielectric boundaries can be only located
between adjacent cells, therefore, they are tangential to the electric-
field components. This kind of dielectric discontinuity is referred to as
tangential discontinuity. Equivalent constitutive parameters have been
derived [10], [11] by enforcing the tangential electric- and magnetic-
field components in the integral formulation of the Ampere’s law
to be continuous across the boundary. Such formulation is first-
order accurate in cell size and leads to the definition of an effective
permittivity and conductivity. These parameters are obtained by
averaging the parameters of the neighboring cells with respect to the
discontinuity, e.g., the effective permittivity forEz(i; j; k) is

"e�(i; j; k) =
1

4
["(i; j; k) + "(i� 1; j; k) + "(i; j � 1; k)

+"(i� 1; j � 1; k)]: (1)

A similar equation holds for�e�(i; j; k). Equation (1) reduces to the
standard one in homogeneous regions where the FDTD formulation

(a) (b)

(c)

Fig. 2. Wedge discontinuities for three-dimensional (3-D) and 2-D grids and
equivalent lumped circuit.

preserves second-order accuracy. When a cell is allowed to be filled
by up to eight different dielectrics, an electric-field component can
be perpendicular to a dielectric boundary. In such a case, hereafter
referred to asnormal discontinuity, effective parameters can be
derived by enforcing the continuity across the interface of the normal
component of electric flux densityDDD and conduction currentJJJ
in the Newmann–Lenz’s law, as in [9] and [12], e.g., the normal
discontinuity between two media having parameters"1, �1, and"2,
�2 is accounted for by the following effective parameters:

"e� = 2
"1"2

"1 + "2
�e� = 2

�1�2

�1 + �2
: (2)

In a general case, an electric-field component at the common point
of eight sub-cells (four cells for a 2-D grid) will belong to a dielectric
edge (wedge discontinuity), resulting at the same time, tangential and
normal to dielectric boundaries (see Fig. 2). The effective parameters
for this geometry can be derived by using lumped-circuit models.
It is known [13] that the FDTD equation which updates an electric
component, e.g.,Ez, is the voltage-balance equation for an electric
bipole if the following correspondences hold:

Ez $ V = Ez�z

"$ C = "
�x�y

�z

� $ G = �
�x�y

�z
(3)

whereV is voltage,C is capacitance, andG is conductance.�x,
�y, and�z are lengths of the cell sides," and � are parameters
of the medium filling the cell. The equivalent capacitance of a
tangential (normal) discontinuity is the parallel (series) connection of
the corresponding capacitances, each one being evaluated by means
of (3).

The equivalent parameters for a wedge discontinuity ofEz , which
exists in the case of subgrid resolution and eight different media
having a common point, can be derived as follows:C1e� andC2e� are
equivalent capacitances to account forEz being tangential to media
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Fig. 3. Periodically loaded cavity as a test case for DSR.

"1, "2, "3, "4, and"5, "6, "7, "8, respectively. They are computed by
(1) and (3) as the parallel of the corresponding capacitances. Next, the
normal discontinuity is taken into account by the series ofC1e� and
C2e� , as in (2). Similar considerations hold for conductances. The
equivalent circuit for a wedge discontinuity is the parallel connection
of the found equivalent capacitance and conductance, as in Fig. 2.
The constitutive parameters forEz, which account for a wedge
discontinuity, are given by

"e� = 2
"
(1)
e� "

(2)
e�

"
(1)
e� + "

(2)
e�

�e� = 2
�
(1)
e� �

(2)
e�

�
(1)
e� + �

(2)
e�

(4)

where the parametersf"(p)e� , �(p)e� gp=1;2 can be obtained from the
tangential discontinuity problems according to (1). Finally,

"e� =
("1 + "2 + "3 + "4)("5 + "6 + "7 + "8)

2("1 + "2 + "3 + "4 + "5 + "6 + "7 + "8)
: (5)

Similar considerations yield the effective permittivity for a 2-D grid
[see Fig. 2(b)] as

"e� =
("1 + "2)("3 + "4)

"1 + "2 + "3 + "4
: (6)

The above definitions of effective parameters for the computation
of Ez include dielectric homogeneity as well as tangential and
normal discontinuities as particular cases. The effective parameters
for Ex andEy can be obtained in a similar way. Note that a cell
is characterized by three couples of effective parameters, one for
each field component. Therefore, a cell partitioned according to DSR
appears as it was filled by an equivalent anisotropic medium.

The proposed algorithm allows the modeling of dielectric features
smaller than a Yee’s cell without a real increase of computer
resources. In fact, letN = I � J � K be the size of an FDTD
computation for a given space step�. Computation time and memory
storage are directly related toN . Instead, the structure is sampled at
�=2 to apply DSR and, therefore, it is modeled by8N voxels.

III. N UMERICAL RESULTS AND DISCUSSIONS

Test cases were performed to investigate the capability of the DSR
scheme to model wedge discontinuities, and more in general curved
dielectric boundaries. For the sake of simplicity, test cases were
performed on a 2-D grid.

The first test was the computation of the lowest resonant frequen-
cies of a rectangular cavity (24 mm� 20 mm). The medium inside
the cavity exhibits periodicity like a photonic bandgap (PBG) material
(see Fig. 3). Resonance frequencies are computed by Gaussian pulse
excitation with a 16-GHz band. The reference solution is obtained

TABLE I
RESONANT FREQUENCIES[GIGAHERTZ] FOR THE CAVITY OF FIG. 3

by a standard FDTD computation with a 0.5-mm grid, which exactly
conforms the dielectric structure in the sense that each Yee cell is
dielectrically homogeneous. The computation domain is 44� 40
cells. Results to be validated are obtained using the DSR algorithm
with a 1-mm grid. Since the dielectric boundaries pass through
the cells, corresponding wedge discontinuities are originated. The
resulting grid is 22� 20, i.e., a quarter of the reference problem. By
applying (6), it follows that the medium behaves as a homogeneous
one with 1.69 effective permittivity. Note that the volumetrically
averaged permittivity is 3.25. Resonant frequencies are reported in
Table I for the different models. The results show that the standard
FDTD, with coarse grid and averaged permittivity, gives completely
wrong results, while at the same computational cost, the DSR scheme
is quite sensitive to the subgrid variation of the dielectric filling the
resonator.

As a second test, the near-field scattering from an infinite layered
dielectric circular cylinder was computed. The cylinder, having the
axis alongz, is illuminated by a TM monochromaticx-directed
plane wave. The scatterer was first modeled on a fine mesh with
cell � = 0:0212 (100 � 100 cells) by means of: 1) standard
FDTD; then on a coarser mesh with cell2� (50 � 50 cells) by
means of 2) standard FDTD; and 3) FDTD with dielectric subgrid
resolution. Accordingly, the outer layer is thick six cells [see 1)]
and three cells [see 2) and 3)]. Electric-field amplitudes for the
three cases are compared with the analytical solution [14] along a
concentric circle of radiusR3 (see Fig. 4). This test line is close
to the cylinder in such a way to appreciate the local effect of the
curved boundary staircasing on the scattered field, which is otherwise
attenuated in the far-field region. In this case of TM scattering, normal
and wedge discontinuities must be considered for DSR modeling. In
TE scattering, only tangential discontinuities are originated, which
are automatically accounted for by FDTD. It can be observed that
the scattered field is successfully predicted by both the FDTD on a
finer mesh and by the FDTD on a coarser mesh with DSR. On the
contrary, the standard FDTD on the coarser mesh fails especially in
the computation of the peaks of the scattered field. Note that the root-
mean-square (rms) error (with respect to the analytical solution) of
solutions 1) and 2) are comparable (6%) while it is doubled (12%)
for 3).

IV. CONCLUSIONS

The FDTD algorithm has been modified to achieve a better
resolution of dielectric interfaces inside the computational domain.
In particular, the staircase step is halved along each direction in
DSR without affecting Yee’s cell size, i.e., the demand of computer
resources. To this purpose, a compact and simple definition of the
effective constitutive parameters, including the effect of wedge dis-
continuities, has been presented. The new formulation allows FDTD
dielectric resolution to be extended to one-eighth of the elementary
cell volume without a local modification of Maxwell’s equations.
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Fig. 4. jExj versus angle� for TM scattering by a circular layered dielectric
cylinder. Inner layer:"1 = 25, �1 = 1, R1 = 0:17�. Outer layer:"2 = 5,
�2 = 0:3, R2 = 0:21�.

Numerical tests were performed to show the accuracy of the new
scheme. In particular, it has been shown that the DSR algorithm
is well suited for the solution of scattering problems involving
curved dielectric boundaries. Results by DSR are as accurate as
those obtained by the standard FDTD on a doubly dense grid
along each direction. It is possible to achieve a saving of computer
resources by a factor of eight (four in 2-D problems). A database
of effective parameters is unnecessary since DSR allows a unique
formulation of effective parameters to hold for any type of dielectric
discontinuity originated by sub-cell partition. The coefficients of the
FDTD equations are quite compact and easy to be embedded into
existing FDTD codes. The proposed degree of subgrid partitioning
is reasonable since a field component of the Yee’s scheme is defined

for each resulting sub-cell. A further subgridding is possible, but it
seems useless because field–component interpolation is required to
enforce FDTD equations.
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